
KRDB Research Centre

for Knowledge and Data

Faculty of Computer Science, Free University of Bozen-Bolzano
Piazza Domenicani 3, I-39100 Bolzano, Italy

Tel: +39 04710 16000, Fax: +39 04710 16009

KRDB Research Centre Technical Report:

On the translatability of view updates

Paolo Guagliardo, Enrico Franconi

Affiliation KRDB Research Centre, Free University of Bozen-Bolzano

Corresponding author guagliardo@inf.unibz.it

Keywords views, updates, translatability, definability

Number KRDB12-1

Date March 12, 2012

URL http://www.inf.unibz.it/krdb/tr/KRDB12-1.pdf

c©KRDB Research Centre. This work may not be copied or reproduced
in whole or part for any commercial purpose. Permission to copy in whole or
part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a
notice that such copying is by permission of the KRDB Research Centre, Free
University of Bozen-Bolzano, Italy; an acknowledgement of the authors and
individual contributors to the work; all applicable portions of this copyright
notice. Copying, reproducing, or republishing for any other purpose shall require
a license with payment of fee to the KRDB Research Centre.

Abstract
We revisit the view update problem and the abstract functional framework by
Bancilhon and Spyratos in a setting where views and updates are exactly given
by functions that are expressible in first-order logic. We give a characterisation
of views and their inverses based on the notion of definability, and we introduce
a general method for checking whether a view update can be uniquely translated
as an update of the underlying database under the constant complement prin-
ciple. We study the setting consisting of a single database relation and two views
defined by projections and we compare our general criterium for translatability
with the known results for the case in which the constraints on the database
are given by functional dependencies. We extend the setting to any number of
projective views, rather than just two, and full dependencies (that is, egd’s and
full tgd’s) as database constraints, rather than functional dependencies only.

1 Introduction

Updating a database by means of a set of views is a challenging task that requires
updates performed on the views to be “translated” into suitable updates of the
underlying database, in order to consistently propagate the changes on the views
to the base relations over which the views are defined.

As an example of the problems that arise in view update, consider the situ-
ation shown in Figure 1, where the view V is defined as the natural join of
the database relations E and D. The initial content of E, D and V consists
only of those tuples having no mark on their left side. Suppose we update V
by inserting the †-marked tuple 〈Ford, Sales, Reyes〉 into it. Then, in order to
reflect this change also in the database, the †-marked tuples 〈Ford, Sales〉 and
〈Sales, Reyes〉 must be necessarily inserted into E and D, respectively. At this
point, however, the new tuple 〈Ford, Sales〉 in E joins with 〈Sales, Locke〉 in
D, resulting in 〈Ford, Sales, Reyes〉 being unexpectedly shown in V as a “side
effect”. Such update anomalies, introducing changes in the view not directly
wanted nor explicitly made by the user, are clearly unacceptable.

EMP DEP MGR

Kwon Tech Hume

Ford Sales Reyes

Ford Sales Locke

V = E ./ D

†
‡

EMP DEP

Kwon Tech

Ford Sales

E

†

DEP MGR

Tech Hume

Sales Reyes

Sales Locke

D

†

Figure 1: The insertion of the †-marked tuple into the view V is propagated as the
insertion of the †-marked tuples into E and D, causing the ‡-tuple to unexpectedly
appear in V .

An additional difficulty is caused by the fact that there might be more than
one possible database update corresponding to a given update on the view, and
we cannot simply pick one because in most situations a “right” choice does
not even exist. For instance, the insertion of the †-marked tuple 〈Ford, Sales〉
into the view V of Figure 2 could be propagated by inserting into the database
relation R either of the two †-marked tuples 〈Ford, Sales, Reyes〉 and 〈Ford,
Sales, Austen〉, or even both of them at the same time. As a matter of fact, we
can pick anything for the MGR attribute in this particular case. Clearly, the
presence of constraints (e.g., a functional dependency R : MGR→ DEP) would
restrict the values that can be used.

Another complication concerns updates that modify the database relations
even though this is not strictly necessary in order to reflect the changes made
on the view. As an example, consider once more the situation in Figure 2
(where R and V initially consists only of the unmarked rows) and the insertion
of the tuple 〈Kwon, Tech〉 into V . Clearly, since V already contains that tuple,

4

EMP DEP MGR

Kwon Tech Hume

Ford Sales Reyes

Ford Sales Austen

Kwon Tech Austen

R

†
†
‡

EMP DEP

Kwon Tech

Ford Sales

V = πEMP,DEP(R)

†

Figure 2: The view V is the projection over the attributes EMP and DEP of the
database relation R.

the view update in question has no effect. Nevertheless, we could think of
propagating it as the insertion into R of a tuple like the ‡-marked one 〈Kwon,
Tech, Austen〉, which after all reflects exactly the changes on the view (i.e., no
change). However, R is modified without reason and this should be forbidden.

A general and precise understanding of the view update problem is due to
the seminal work [2] by Bancilhon and Spyratos (B&S), who devise a functional
framework in which they formalise the problem and provide an elegant solution
to it. They introduce the notion of view complement, representing what is miss-
ing from a view to have the same informative content of the underlying database.
Moreover, they introduce the constant complement principle, establishing that
the changes made on a view must not influence the content of its complement.
B&S do not provide actual methods for checking the translatability of updates
and computing their translations, asserting that “computational algorithms (if
they exist) must be sought in specific problems”.

In the context of SQL databases, Lechtenbörger [11] gives a characterisation
of the constant complement principle in terms of “undo” operations, showing
that view updates are translatable under constant complement precisely if users
have the chance to undo all effects of their updates by using further view up-
dates. It is then argued that testing whether this holds could be an alternative
to checking whether users can observe all effects of their updates in the view
schema.

Gottlob et al. [8] extend the results of [2] to the class of so-called consistent
views, which properly contains the views translating under constant comple-
ment. The main difference is that, during the translation of an update on a
consistent view, the complement is not required to remain invariant, but it is
allowed to “decrease” according to a suitable partial order. Indeed, when the
partial order is the equality, the framework coincides with the one in [2].

Cosmadakis and Papadimitriou [7] consider a restricted setting that consists
of a single database relation and two views defined by projections. They provide
necessary and sufficient conditions for the translatability of insertions, deletions
and replacements under constant complement w.r.t. a specific database instance
and when the constraints on the database are given by functional dependencies
(fd’s). To the best of our knowledge, [7] is the only comprehensive work in
which the framework by B&S is applied to a relational setting. We discuss
in detail this application scenario in Sec. 4, where we extend the setting to
any number of views defined by projections, rather than just two, and more
expressive database constraints, namely full dependencies (egd’s and full tgd’s),
and to classes of updates rather than single updates.

5

In [2], the view update problem is formalised at a high level of abstraction,
where views and updates are arbitrary functions, of which no constructive char-
acterisation is given, as indeed one might not even be possible. In this paper,
we consider the view update problem at a lower level of abstraction, by revis-
iting B&S’ framework in a setting where views and updates are exactly given
by functions that are expressible in first-order logic (FOL). Under certain con-
ditions, this class of functions can be constructively characterised through the
notion of logical definability, in terms of which we introduce a general method
for checking the translatability of arbitrary FO-expressible view updates.

The paper is organised as follows: in Sec. 2 we introduce some notation and
basic definitions; in Sec. 3 we present our logic-based framework and characterise
when and whether a FO-expressible view update is uniquely translatable under
constant complement; in Sec. 4 we study the case considered in [7] and generalise
the results to a more general setting; we conclude in Sec. 5 by pointing out some
future research directions.

2 Preliminaries

An n-ary relation on a set A, where n ∈ N1 denotes the arity of the relation,
is a subset of the Cartesian product An, that is, a set of n-tuples of elements
of A. A signature is a finite set S of relation symbols and each symbols S ∈ S
has an associated arity denoted by arity(S). A relational structure s over a
signature S is a pair 〈∆s, ·s〉 where ∆s is a (possibly infinite) domain of objects
and ·s is an interpretation function that associates each symbol S ∈ S with a
relation Ss on ∆s, called the extension of S, of appropriate arity (that is, if S
is an n-placed relation symbol, then Ss is an n-ary relation). We assume the
interpretation function ·s of a relational structure s over S with domain ∆ to be
from S to

⋃
i≥1 P(∆i), where P(A) denotes the powerset of A. Given a relational

structure s over S, its restriction to a subset S ′ of S is the relational structure
s|S′ obtained from s by restricting its interpretation function to the relation
symbols in S ′. For two relational structures s = 〈∆, ·s〉 and t = 〈∆, ·t〉 over
two disjoint signatures S and S ′, respectively, s] t = 〈∆, ·s ∪ ·t〉 is a relational
structure over S ∪ S ′. A constraint is a closed formula ϕ in (some fragment
of) FOL. The set of relation symbols occurring in ϕ is denoted by sig(ϕ) and
ϕ is said to be over a signature S if sig(ϕ) ⊆ S. We extend sig(·) to sets of
constraints in the natural way. Sequences (i.e., tuples) are denoted with an
overline, e.g., x, and x[k] denotes the k-th element in x.

Given two disjoint signatures S and S ′ and a finite set Σ of constraints over
S ∪S ′, we say that a relation symbol S ∈ S is implicitly defined by the relation
symbols in S ′ under Σ if and only if, for every two Σ-models s and t such that
∆s = ∆t, we have that Ss = St whenever s|S′ = t|S′ . In other words, S ∈ S is
implicitly definable from S ′ if any two models of Σ that have the same domain
and agree in what they assign to the symbols in S ′ also agree in what the assign
to S, that is, the extension of S depends only on the extension of the symbols in
S ′. We say that S ∈ S is explicitly defined by the relation symbols in S ′ under
Σ iff there is a formula φS(x), with as many free variables as the arity of S, such
that Σ |= ∀x

(
S(x) ↔ φS(x)

)
and sig

(
φS(x)

)
⊆ S ′, called an explicit definition

of S with respect to S ′ under Σ.

6

Person

Male Female

{disjoint, complete}

Figure 3: A UML class diagram where each class is implicitly defined by the others
(e.g., knowing all the persons and who the males are, we also implicitly know who the
females are).

Example 1. Consider the UML class diagram depicted in Figure 3, stating that
(1) “a Male is a Person”, (2) “a Female is a Person”, (3) “Male is disjoint with
Female” (4) “a Person is Male or Female”. This can be expressed as a first-order
logic theory Σ over {Male, Female, Person} consisting of the following formulae:

∀x . Male(x)→ Person(x) ; (1)

∀x . Female(x)→ Person(x) ; (2)

∀x . Male(x)→ ¬Female(x) ; (3)

∀x . Person(x)→ Male(x) ∨ Female(x) . (4)

Under the constraints in Σ, whenever we “fix” who the persons and the males
are, we also implicitly determine who the females are. Indeed, when Person(x)
and Male(x) are considered database predicates, Female(x) is explicitly defined
as the view Person(x)∧¬Male(x). That is, under the given constraints, a female
is exactly a person who is not male. �

Clearly, if a relation symbol S ∈ S has an explicit definition w.r.t. S ′ under
constraints Σ, then S is also implicitly defined by S ′ under Σ. For instance, if
A(x) has the explicit definition B(x) ∨ C(x), that is, Σ |= ∀x .A(x)↔

(
B(x) ∨

C(x)
)
, then the interpretation of A directly depends on what is assigned to B

and C. In other words, explicit definability always implies implicit definability.
The converse is not true in general, that is, knowing that a symbol is implicitly
defined by some other ones does not mean that we can actually find an explicit
definition of it in terms of those symbols. The following fundamental result due
to Beth [4] establishes that this is actually the case for first-order logic.

Theorem (Beth’s Definability). Let S and S ′ be disjoint signatures, and Σ be
a finite set of first-order logic constraints over S ∪ S ′. If S ∈ S is implicitly
definable from S ′ under Σ, then S has an explicit definition with respect to S ′
under Σ.

A renaming over a signature S is a bijective function ren : S → S ′, where S ′ is
a signature disjoint with S. We extend ren(·) to signatures, relational structures
and (sets of) constraints in the natural way. For instance, given a constraint ϕ,
ren(ϕ) is obtained from ϕ by replacing every occurrence of each relation symbol
r ∈ sig(ϕ) with ren(r). Clearly, for a set Σ of constraints over S and a relational
structure s over ren(S), we have that s |= ren(Σ) iff ren−1(s) |= Σ.

A database schema is a signature R of database symbols and a database state
is a relational structure over R. A view schema is a signature V of view symbols

7

not occurring in R and a view state is a relational structure over V. We denote
the set of all database (resp., view) states by S (resp., T). For a database state
s ∈ S and a view state t ∈ T having the same domain, the relational structure
s] t is called a global state over R∪ V.

We consider a satisfiable finite set Σ of global constraints over the signa-
ture R ∪ V. We call database constraints the set ΣR = {φ ∈ Σ | sig(φ) ⊆ R},
view constraints the set ΣV = {φ ∈ Σ | sig(φ) ⊆ V} and inter-schema constraints
all other formulae in Σ that are not database nor view constraints. Obviously,
since R and V are disjoint with each other, the database, view and inter-schema
constraints form a partition of the global constraints Σ. Note also that, in
general, inter-schema constraints need not provide the definitions of the view
symbols explicitly (this is quite common in practise, though). For instance,
consider once again Example 1 and take {Person,Male} as database schema
and {Female} as view schema; then, all of the formulae in Σ are inter-schema
constraints (each mentions symbols from both signatures), but none of them
directly provides an explicit definition for Female, which is nevertheless defined
implicitly.

A database state s (resp., view state t) is Σ-consistent iff there exists a view
state t (resp., database state s) with the same domain such that the global state
s] t is a model of Σ. We denote the set of Σ-consistent database states (resp.,
view states) by SΣ (resp., TΣ).

Our framework is based on the central notion of view under constraints,
which naturally extends with explicit constraints the definition of view used in
[2]. Indeed, when only database constraints are present, the two notions essen-
tially coincide, although in [2] constraints (at the database level) are considered
only in an implicit way.

Definition 1 (View under constraints). A view fromR to V under constraints
Σ is a total mapping f : SΣ → TΣ such that s] f(s) |= Σ for every s ∈ SΣ. �

We write R�Σ V to indicate that every V ∈ V is implicitly definable from
R under constraints Σ. In addition, we use V �Σ R, R /�Σ V and V /�Σ R
with the obvious meaning. Since R and V are disjoint, every model of Σ has
the form s] t, where s ∈ S and t ∈ T are (globally consistent) states with the
same domain. Therefore, we introduce definability in terms of states as follows.

Definition 2. We say that R defines V under Σ (written R �Σ V) iff, for
every s ∈ S and t, t′ ∈ T, it is the case that t = t′ whenever s] t |= Σ and
s] t′ |= Σ. �

In general, there might exist more than one view mapping satisfying a given
set of constraints. An important connection between definability and views
under constraints is that the mapping is unique exactly when each view symbol
can be defined in terms of the database symbols under the given constraints.

Theorem 1. R�Σ V iff there exists one and only one view from R to V under
Σ.

Proof. We will show that there exist two distinct views from R to V under Σ if
and only if R /�Σ V.

8

“if”. Assume R /�Σ V, then for some s ∈ SΣ there are t′, t′′ ∈ TΣ with t′ 6= t′′

such that s] t′ and s] t′′ are models of Σ. Therefore, we can construct two
views f ′ and f ′′ such that f ′(s) = t′ and f ′′(s) = t′′.

“only if”. Let f and f ′ be views from R to V under Σ such that f(s) 6= f ′(s)
for some s ∈ SΣ. Then, both s] f(s) and s] f ′(s) are models of Σ, hence
R /�Σ V. �

The above theorem gives a characterisation of the views that are expressible by
means of constraints in FOL. In what follows, we write R�f

Σ V to indicate that
R�Σ V and f is the (one and only) view induced by the constraints Σ fromR to
V in light of Theorem 1. The surjection induced by (or surjective restriction of) a
function f is the surjective function obtained from f by restricting its codomain
to its image. We use concatenation to indicate composition, e.g., fg denotes
the composition of f with g.

The framework we will present in the next section is based on the notion
of logical definability, and relies on the fact that when something is implicitly
defined it is possible to find its explicit definition in FOL. Unfortunately, Beth’s
result [4] holds when instances are unrestricted (i.e., allowed to be possibly
infinite), while it fails [9] when considering finite instances only, which is the
usual case of interest in database applications. Clearly, when something holds
for unrestricted models it also holds in particular for finite models, therefore
our framework is sound. On the other hand, if something holds on finite mod-
els, it does not necessarily hold on all models, hence our approach might in
general be incomplete, in the sense that we may fail to discover invertible view
mappings and translatable view updates that are such only on finite models,
because our techniques require these properties to hold on unrestricted models.
We say that a problem is finitely controllable iff it holds true for unrestricted
models whenever it holds true for finite ones (the vice versa is always true).
We will discuss an application setting in which implicitly definability is finitely
controllable in Sec. 4.

3 A Logic-Based Framework for View Updates

In this section, we present our framework for view updating based on the notion
of definability in logic. We first revisit some of the formal definitions given in [2],
adapting them to our logic-based setting. Next, we show that a view induced by
a set of constraints is invertible exactly when each database symbol is implicitly
defined by the view symbols under the same constraints. We then give a general
criterion for translatability in terms of a special set of view constraints that are
satisfied exactly by each and every FO-expressible translatable view update. We
conclude by discussing the notion of view complement and show how the results
on translatability extend to the case of translation under constant complement.

A database update (resp., view update) is a function d : S→ S (resp., u : T→
T) associating each database state (resp., view state) with another one having
the same domain. The sets of all the database and view updates are denoted
by UR and UV , respectively.

Definition 3 (Strict update). Let f : SΣ → TΣ be a view from R to V under
Σ. An update u ∈ UV is called strict on f iff there exists t ∈ f(SΣ) such that
u(t) 6= t. The set of all the updates that are strict on f is denoted by Uf . �

9

f

f

ud

ud

SΣ TΣ

(a)

f

f

d

u

d

SΣ TΣ

(b)

Figure 4: (a) The database update d is a translation of the view update u. (b) The
database update d is consistent with the view update u but not acceptable.

In other words, a strict update w.r.t. a view f is one that does not coincide with
the identity mapping on the image of f .

Given a view under constraints and a view update, we want to find a suitable
database update that propagates the changes to the base relations in a consist-
ent way. More precisely, the view update should be translated as a database
update that brings the database to a new state from which, through the view
mapping, we reach exactly the updated view state. In addition, unjustified and
unnecessary changes in the database are to be avoided, in the sense that if the
view update does not modify the view state, then the database update must
not modify the corresponding database state either. These requirements are
formalised below (cf. Definition 3.1 in [2]) and exemplified in Figure 4a.

Definition 4 (Translation). Let f be a view from R to V under Σ, let d ∈ UR
and u ∈ UV . The database update d is a translation of u (w.r.t. f) if and only
if:

(1) uf = fd ; and (consistent)

(2) ∀s ∈ SΣ, uf(s) = f(s) =⇒ d(s) = s . (acceptable) �

A situation like the one shown in Figure 4b, where we exhibit a database update
that is consistent with a given view update but not acceptable, cannot happen
if the view mapping is injective.

Proposition 1. Let f be an injective view from R to V under Σ and let u ∈ UV .
Then, every database update consistent with u is acceptable.

Proof. Let d ∈ UR. We need to show that the first condition of Definition 4
implies the second one. Thus, let s ∈ SΣ and assume uf(s) = fd(s). Now,
if uf(s) = f(s), we get fd(s) = f(s) which, by the injectivity of f , implies
d(s) = s. �

A translation of a given update on a view f can only exist if the updated view
state lies in the image of f ; otherwise, there would be no chance of reaching
the new view state by means of f from some database state, which is what
Definition 4 indeed requires. Therefore, before we start looking for a translation,

10

f

f

u

u

u

SΣ f(SΣ)

T

Figure 5: The view update u is not translatable, as it leads to a view state outside
the image of f , therefore not reachable from any database state.

we first need to make sure that the given view update allows for one. A view
update that can be translated into a suitable database update, that is, for
which there exists a translation, is called translatable. We give an example of
untranslatable update in Figure 5.

Definition 5 (Translatability). Let f : SΣ → TΣ be a view from R to V under
Σ. A view update u ∈ UV is translatable (w.r.t. f) if and only if for each s ∈ SΣ

there exists s′ ∈ SΣ such that f(s′) = uf(s). �

Note that the condition of translatability given in Definition 5 is equivalent to
saying that u is translatable if and only if u

(
f(SΣ)

)
⊆ f(SΣ). It is also easy to

verify that, as expected, a view update is translatable if and only if there exists
a translation of it.

Translatability of view updates ensures that there exists a translation, but
does not rule out the possibility that there might be more than one. To avoid
ambiguity, we are only interested in view updates that are uniquely translatable,
that is, for which there exists one and only one translation.

One of the factors contributing to the existence of multiple translations is
the loss of information that occurs when two distinct database states collapse
into the same view state, that is, when the view mapping is not injective. Intu-
itively, if a view update results in a view state that is the image of two different
database states, we then have two different alternatives for “going back” to the
database, and therefore multiple ways of translating the update. However, lack
of injectivity in the view is not sufficient for a translatable view update to admit
more than one translation. In fact, there are uniquely translatable updates on
views that are not injective, as witnessed by the example in Figure 6a. Indeed,
even in the presence of view states corresponding to more than one database
state, there is only one possible translation (if one at all) as long as the view
update does not result in one of these “ambiguous” view states. This is stated
more precisely in the following lemma.

Lemma 1. Let f be a view under Σ and let u ∈ UV . Denote by Sf
Σ the set of

all states s ∈ SΣ for which there does not exist s′ ∈ SΣ such that s 6= s′ and
f(s) = f(s′). Then, u is uniquely translatable if and only if u

(
f(SΣ)

)
⊆ f(Sf

Σ).

Proof. We show that u
(
f(SΣ)

)
* f(Sf

Σ) if and only if u is not uniquely trans-
latable.

11

“if”. Assume that u is not uniquely translatable. If u is not translatable at all,
u
(
f(SΣ)

)
* f(SΣ) and, since f(Sf

Σ) ⊆ f(SΣ), we get u
(
f(SΣ)

)
* f(Sf

Σ). Let us
now consider the case in which u is translatable, but there exist two translations
d1 and d2 of u such that d1(s) 6= d2(s) for some s ∈ SΣ. Then, as d1 and d2 are
both translations of u, we have fd1(s) = uf(s) = fd2(s). Therefore, d1(s) and

d2(s) are not in Sf
Σ and uf(s) 6∈ f(Sf

Σ).

“only if”. Assume that u
(
f(SΣ)

)
* f(Sf

Σ). Then, there is a state t ∈ f(SΣ)

such that u(t) 6∈ f(Sf
Σ). Moreover, as t is in the image of f , there exists s ∈ SΣ

for which f(s) = t. If u(t) 6∈ f(SΣ), then u is not translatable at all, and we
are done. Thus, let us assume u(t) ∈ f(SΣ). Then, there exists s′ ∈ SΣ such
that f(s′) = u(t). This means that there is a translation d1 of u for which

d1(s) = s′. Since u(t) 6∈ f(Sf
Σ), there must be some state s′′ ∈ SΣ such that

s′′ 6= s′ and f(s′′) = f(s′). Hence, there exists also a translation d2 of u for
which d2(s) = s′′. Therefore, since d1 6= d2, we conclude that u is not uniquely
translatable. �

Clearly, for an injective view, Sf
Σ coincides with SΣ, therefore a view update

is translatable if and only if it is uniquely translatable. The following theorem
gives a characterisation of the unique database update into which a translatable
view update can be translated when the view mapping is injective.

Theorem 2. Let f be an injective view under Σ, let u ∈ UV be translatable and
let d ∈ UR. Let f̂ denote the surjection induced by f and let û be obtained from
u by restricting its domain and codomain to f(SΣ).1Then, d is a translation of

u if and only if d = f̂−1ûf̂ .

Proof. Special case of Theorem 5.5 and Theorem 5.6 in [2] when g ≡ 0. Below,
however, we provide a detailed proof.

As f is injective, f̂ is a bijection from SΣ to f(SΣ), hence invertible. Moreover,
by Proposition 1, it is enough to show that only the first condition of Definition 4
is satisfied. For every s ∈ SΣ, we have the following:

fd(s) = ff̂−1ûf̂(s) = ff̂−1û
(
f̂(s)

)
= ff̂−1û

(
f(s)

) [
by def. of f̂ , since s ∈ SΣ

]
= ff̂−1

(
û(t)

) [
by taking t = f(s)

]
= ff̂−1

(
u(t)

) [
by def. of û, since t ∈ f(SΣ)

]
= f

(
f̂−1(s′)

) [
by taking s′ = u(t)

]
= f̂

(
f̂−1(s′)

) [
by def. of f̂ , as f̂−1(s′) ∈ SΣ

]
= s′ = u(t) = uf(s) �

As already noted, a view update may be uniquely translatable even when
the view is not injective. However, a characterisation of the translation, in the
same spirit of the one given above for injective views, though possible, becomes
more involved in this case. In this article, we do not pursue that direction, but
rather focus on enforcing injectivity.

1As u is assumed to be translatable, u
(
f(SΣ)

)
⊆ f(SΣ).

12

f

f

f
d

d

d

u

u

SΣ

TΣ

(a)

f

f

f

d

d

u

u

SΣ TΣ

(b)

Figure 6: (a) Although f is not injective, d is the only possible translation of the view
update u. (b) The dashed paths are mutually exclusive alternatives for d, resulting in
different translations of u.

3.1 Invertibility of Views

In order to apply the result of Theorem 2, we are required to know, in the first
place, whether a view is injective. More importantly, once in the presence of
an injective view mapping, we also need some way of computing the inverse of
its surjective restriction, so as to effectually obtain the unique translation of
any translatable view update. In B&S’ framework, view mappings are generic
functions and no attempt is made in providing computational algorithms for
them and their inverses; therefore, the translation of a uniquely translatable
update is characterised only in abstract functional terms, that is, as given in
Theorem 2. In our setting, however, view mappings are functions induced (i.e.,
expressible) by sets of constraints, and a constructive characterisation of their
inverses is possible, as we shall see, by means of logical definability.

A sufficient condition for the injectivity of a view under constraints is that
each of the database symbols be implicitly definable under the given constraints
in terms of the view symbols. In addition, the same condition ensures that the
function induced by the constraints, opportunely restricted on the appropriate
domain, is the inverse of the surjection induced by the view.

Lemma 2. Let f be a view from R to V under Σ, and let V �h
Σ R. Then, 1)

f is injective; and 2) the restriction of h to the image of f is the inverse of the
surjection induced by f .

Proof.

1) Suppose f is not injective, that is, there are states s, s′ ∈ SΣ such that s 6= s′

and f(s) = f(s′). But then, since f is a view under Σ, s]f(s) and s′]f(s′)
are both models of Σ, in contradiction of V �Σ R.

2) Let f̂ : SΣ → f(SΣ) be the surjection induced by f and let ĥ : f(SΣ) → SΣ

be the restriction of h to f(SΣ). Clearly, since f is injective, f̂ is a bijection,

hence invertible. As f̂(s) = f(s) for every s ∈ SΣ and ĥ(t) = h(t) for every

t ∈ f(SΣ), proving that ĥ = f̂−1 amounts to showing that hf(s) = s for
every s ∈ SΣ. Thus, let s ∈ SΣ and t = f(s). Since f is a view under Σ,

13

s] t is a model of Σ. Let s′ = h(t) and suppose that s′ 6= s. As h is a view
under Σ, s′] t is also a model of Σ, in contradiction of V �Σ R. Therefore,
s = s′ = h(t) = hf(s). �

Note that, in the above lemma, no assumption is made on the view itself, that
is, f can be any view under constraints. Next, we consider the case when the
view is induced by the constraints, and study its injectivity and surjectivity.

Lemma 3. Let R �f
Σ V. Then, 1) f is surjective; and 2) f is injective if and

only if V �Σ R.

Proof.

1) Suppose f is not surjective, that is, there are states s ∈ SΣ and t ∈ TΣ such
that s] t |= Σ and t 6= f(s). Since f is a view under Σ, s] f(s) |= Σ too, in
contradiction of R�Σ V.

2) By Lemma 2, f is injective whenever V �Σ R, therefore we just need to show
the “only if” direction and we do so by contraposition. Assume V /�Σ R;
then, there exist Σ-models s] t and s′] t with s 6= s′. Since s, s′ ∈ SΣ and
f is a view under Σ, s] f(s) and s′] f(s′) are also models of Σ. But then,
as R�Σ V, we have that f(s) = t = f(s′). Therefore, f is not injective. �

In typical scenarios, a view mapping is usually specified by providing an expli-
cit definition of each view symbol in terms of the database symbols, and it is
therefore trivially induced by the constraints.

The following is a direct important consequence of Lemma 2 and Lemma 3,
establishing that it is possible to invert a view induced by a set of constraints
iff the database symbols are implicitly defined by the view symbols under the
same constraints, in which case the inverse is also effectively computable. In
such a situation, the constraints induce two mappings, one from the database
states to the view states and one in the opposite direction, which are indeed one
the inverse of the other.

Theorem 3. Let R �f
Σ V. Then, f is invertible if and only if V �h

Σ R, and
in such a case h = f−1. �

Given Σ over R ∪ V, the problem of checking whether R ∈ R is implicitly
defined by the symbols in V under Σ, which we indicate with impl-def(R,V,Σ),
amounts to checking whether the following entailment holds:

Σ ∪ ren(Σ) |= ∀x
(
R(x)↔ R′(x)

)
, (5)

where ren is a renaming over R and R′ = ren(R). Note that, as R′ is simply a
renaming of R, for symmetric reasons it is sufficient to check the entailment of
only one of the implications on the r.h.s. of (5). That is, impl-def(R,V,Σ) can
be reformulated as follows:

Σ ∪ ren(Σ) |= ∀x
(
R(x)→ R′(x)

)
, (6)

which is equivalent to the problem of checking containment of (atomic) queries
under constraints.

Given a view f from R to V induced by a set of constraints Σ over R ∪ V,
we define the problem invert(V,Σ) of determining whether f is invertible, which
amounts to check whether impl-def(R,V,Σ) for each R ∈ R (where R is given
by sig(Σ) \ V).

14

3.2 Translatability of View Updates

In this section, we provide an interesting characterisation of when a view update
is translatable. The general idea consists in imposing additional constraints on
the view schema so that every legal view update is translatable and vice versa.
Indeed, we will show that under certain conditions it is possible to find a set
of view constraints such that a view update satisfies them if and only if it is
translatable.

A consistent set of constraints overR∪V isR-defining iff it consists exactly of
one formula for each R ∈ R of the form ∀x

(
R(x)↔ φR(x)

)
, with sig

(
φR(x)

)
⊆

V. For a finite satisfiable set of global constraints Σ and an R-defining set Θ,
we denote by Θ(Σ) the set of view constraints obtained by replacing, for each
R ∈ R, every occurrence of R(x) in Σ with the definition φR(x) given in Θ.
Clearly, an R-defining set is such that V �Θ R and induces a function θ from
V to R. Since Θ does not contain nor entail any database or view constraints,
every view state t ∈ T is Θ-consistent and therefore in the domain of θ.

Lemma 4. Let Θ be an R-defining set of constraints and let θ be the view from
V to R induced by Θ. Let Σ be a finite satisfiable set of global constraints such
that Σ |= Θ, and let t ∈ T. Then, θ(t)] t |= Σ if and only if t |= Θ(Σ).

Proof. As Θ is R-defining and θ is induced by Θ, for every t ∈ T we have that
θ(t)] t |= Θ and, for every ψ ∈ Σ, that

θ(t)] t |= ∀x
(
ψ(x) ≡ ψ′(x)

)
, (∗)

where ψ′ is obtained by replacing every occurrence in ψ of each database predic-
ate with the corresponding definition given in Θ. Then, we have the following:

θ(t)] t |= Σ ⇐⇒ ∀ψ ∈ Σ, θ(t)] t |= ψ

⇐⇒ ∀ψ ∈ Σ, θ(t)] t |= ψ′
[

by (∗)
]

⇐⇒ θ(t)] t |= Θ(Σ)
[

by definition of Θ(Σ)
]

⇐⇒ t |= Θ(Σ)
[

since sig
(
Θ(Σ)

)
⊆ V

]
. �

We know by Beth’s theorem that whenever V �Σ R there exists an explicit
definition for each of the database symbols in terms of the view symbols, that
is, the constraints entail an R-defining set Θ. In such a case, we say that Θ(Σ)
“embeds” Σ and denote it by Σ̃V , which we call the V-embedding of Σ. From
Lemma 4, we then directly get the following.

Corollary 4. Let V �Σ R and let t ∈ T. Then, t is Σ-consistent if and only
if t |= Σ̃V . �

The V-embedding of a set Σ of global constraints is a set of view constraints
having the same “restrictiveness” of the whole Σ, but with the advantage that
they can be checked locally on the view schema. This is of particular relevance
for surjective views, in which case it turns out that such constraints ensure the
translatability of every view update satisfying them and enforce every translat-
able view update to be legal with respect to them.

Theorem 5. Let f be a surjective view from R to V under Σ, let V �Σ R and
let u ∈ UV . Then, u is translatable if and only if u(t) |= Σ̃V for every t ∈ TΣ.

15

Proof. Since f is surjective, f(SΣ) = TΣ. Hence, u is translatable iff u(TΣ) ⊆
TΣ, that is, iff u(t) ∈ TΣ for every t ∈ TΣ and, as V �Σ R, by Corollary 4 we

have that u(t) ∈ TΣ iff u(t) |= Σ̃V . �

Note that, under the assumptions of Theorem 5, every globally consistent view
state is in the image of the view and, in addition, satisfies the V-embedding of
the global constraints. Thus, the above result essentially says that we need to
make sure that, when updating a view state that is legal w.r.t. the embedded
constraints, we always end up in another legal view state.

Let ren be a renaming over R∪V and let Ξ be a set of constraints over V∪V ′
s.t. V �Ξ V ′, where V ′ = ren(V). Let Ξ̃V be obtained from Ξ by replacing, for
each symbol V ′ ∈ V ′, every occurrence of the predicate V ′(x) with its explicit
definition in terms of V. Then, the function ξ induced by Ξ expresses a view
update u : T → T iff Ξ̃V is valid.2 Indeed, in such a case, ξ takes a view state
t over V and returns an updated view state ξ(t) over V ′. The view update u
expressed by Ξ is then the function associating each t ∈ T with ren−1

(
ξ(t)

)
.

Note that every set of constraints Ξ over V ∪V ′ that expresses a view update is
equivalent to V ′-defining set.

Insertion. For each view symbol V ∈ V, the insertion of an arbitrary tuple x
into (the extension of) V is represented by the following open formula:

insertV (x)
def≡ ∀y

[
V ′(y)↔

(
V (y) ∨ y = x

)]
. (7)

Clearly, for every interpretation s = 〈∆s, ·s〉 over {V, V ′} and every assignment
α : x 7→ a, where a is a tuple of values from ∆s, we have that s, α |= insertV (x)
iff V ′

s
= V s ∪ {a}. Note that (7) can equivalently also be written as follows:

∀y
[(
V (y)→ V ′(y)

)
∧
(
V ′(y)→

[
V (y) ∨ y = x

])
∧ V ′(x)

]
. (8)

Deletion. For each view symbol V ∈ V, the deletion of an arbitrary tuple x
from (the extension of) V is represented by the following open formula:

deleteV (x)
def≡

∀y
[(
V ′(y)→ V (y)

)
∧
(
V (y)→

[
V ′(y) ∨ y = x

])
∧ ¬V ′(x)

]
. (9)

For every interpretation s = 〈∆s, ·s〉 over {V, V ′} and every assignment α : x 7→
a, where a is a tuple of values from ∆s, we have that s, α |= deleteV (x) if and
only if V ′

s
= V s \ {a}. Indeed, s, α |= deleteV (x) iff s |= deleteV (a), that is, iff

all of the conjuncts of (9) are satisfied by s after substituting x with a, which
gives:

V ′
s ⊆ V s (10a)

V s ⊆ V ′s ∪ {a} (10b)

a 6∈ V ′s (10c)

Then, (10a) and (10c) together are equivalent to V ′
s ⊆ V s \ {a}, while (10b)

and (10c) give the other inclusion.

2This is needed to ensure that Ξ does not impose constraints on the view schema.

16

No change. For each view symbol V ∈ V, any update that does not modify
V can be represented by the following closed formula:

noopV
def≡ ∀x

(
V ′(x)↔ V (x)

)
. (11)

Replacement. For each view symbol V ∈ V, the replacement in V of a tuple
x with a tuple y is expressed by the following open formula:

replaceV (x, y)
def≡
[(
¬V (x) ∨ x = y

)
→ noopV

]
∧
[(
V (x) ∧ x 6= y

)
→ ∀z

((
V ′(z)→

[
V (z) ∨ z = y

])
∧
(
V (z)→

[
V ′(z) ∨ z = x

])
∧ ¬V ′(x) ∧ V ′(y)

)]
. (12)

Let s = 〈∆s, ·s〉 be an interpretation over {V, V ′} and let α : {x 7→ a, y 7→ b } be
an assignment of the variable in x and y, where a and b are tuples of values from
∆s. We show that the semantics of replaceV (x, y) is the expected one for every
such s and α. Indeed, we have that s, α |= replaceV (x, y) iff s |= replaceV

(
a, b
)
,

that is, iff the r.h.s. of (12) is satisfied by s after substituting x with a and y
with b. The antecedents of the two outermost implications in the r.h.s. of (12)
define two mutually exclusive cases. When a = b or a 6∈ V s, we have V ′

s
= V s,

that is, replacing a tuple with the same one or trying to replace a tuple which is
not present in the extension of V has no effect. Otherwise, all of the following
are true:

a ∈ V s (13a)

a 6= b (13b)

V ′
s ⊆ V s ∪

{
b
}

(13c)

V s ⊆ V ′s ∪ {a} (13d)

a 6∈ V ′s (13e)

b ∈ V ′s (13f)

Then, (13d) and (13e) give V s \ {a} ⊆ V ′s, from which we get
(
V s \

{
a
})
∪
{
b
}

⊆ V ′
s

using (13f), while (13c) and (13e) give V ′
s ⊆

(
V s ∪

{
b
})
\
{
a
}

. There-

fore, using (13b), we obtain V ′
s

=
(
V s ∪

{
b
})
\
{
a
}

=
(
V s \

{
a
})
∪
{
b
}

, that
is, replacing an existing tuple with a different one is the result of inserting the
new tuple and then deleting the old one or, equivalently, deleting the old tuple
and then inserting the new one.

In our formalism we can also directly express transactional updates, in the
sense of sequences of updates that are applied one after the other. For instance,
suppose we want to insert a tuple a into the extension of V and then delete
tuple b from it. Note that the update insertV (a) ∧ deleteV (b) implies V ′(a) and
¬V ′(b) (where V ′ represents V after the update), hence it is inconsistent if
a = b. The correct way to represent the two sequential updates as a transaction
is to consider the update insertV (a) ∧ deleteV ′(b), where deleteV ′(b) is applied
on V ′, which is the result of applying insertV (a) on V .

From Theorem 5, we get the following characterisation of the translatability
of those view updates that are expressible, as described, in FOL.

17

Theorem 6. Let f be a surjective view from R to V under Σ, let V �Σ R and
let u ∈ UV be expressed by Ξ. Then, u is translatable if and only if Σ̃V ∪ Ξ |=
ren
(
Σ̃V
)
.

Under the assumptions of the above theorem, the view f is injective by Lemma 2.
Hence, by Theorem 2 every translatable view update u has the unique trans-
lation f−1uf . However, we might not be able to actually compute f−1 unless
R�Σ V, in which case Theorem 3 ensures that the inverse of f is the view from
V to R induced by Σ. When R�Σ V, V �Σ R and Ξ expresses a translatable
view update u, we have that V �Ξ ren(V) and ren(V) �ren(Σ) ren(R), therefore
the unique translation of u is the database update expressed by the set Υ such
that R�Υ ren(R), obtained by replacing in ren(Σ) every occurrence of ren(V)
with its definition in terms of V and, in turn, every occurrence of V with its
definition in terms of R.

Given the V-embedding Σ̃V of a set of constraints Σ over R ∪ V inducing
an invertible view, and given a set of constraints Ξ expressing a view update
u ∈ UV , translat(Ξ, Σ̃V) is the problem of determining whether u is translatable,

that is, from Theorem 6, whether Σ̃V ∪ Ξ |= ren(Σ̃V). Note that a view update
which is not translatable in general might still be translated when it is applied
on a given view state. For example, the insertion of a specific tuple of values is
unlikely to be translatable for all possible view states, but it might be such for a
given (legal) view state. This related problem, indicated with translat(t,Ξ, Σ̃V),
of checking whether the update is translatable w.r.t. a view state t satisfying
Σ̃V , that is, whether u(t) |= Σ̃V . Clearly, translat(Ξ, Σ̃V) amounts to checking

translat(t,Ξ, Σ̃V) for each t ∈ T such that t |= Σ̃V .
We conclude this section with the proof of Theorem 6, for which we first

need to prove a general technical lemma that will also be used later on.

Lemma 5. Let Σ and Γ be finite sets of constraints over σ and γ, respectively,
and let s be a relational structure over σ∪γ. Then, s |= Σ∪Γ iff s = t] t′] t′′,
where t, t′ and t′′ are relational structures over σ\γ, σ∩γ and γ\σ, respectively,
such that t] t′ |= Σ and t′] t′′ |= Γ.

Proof (of Lemma 5). As σ ∪ γ can be partitioned into σ \ γ, σ ∩ γ and γ \ σ,
every relational structure over σ ∪ γ has the form s = t] t′] t′′, where t, t′ and
t′′ are relational structures with the same domain over such partitions.

“if”. Assume t] t′ |= Σ and t′] t′′ |= Γ, and suppose that s 6|= Σ ∪ Γ. Then,
there is a formula ϕ ∈ Σ ∪ Γ such that t] t′] t′′ 6|= ϕ. If ϕ ∈ Σ, we have that
sig(ϕ) ⊆ σ and, since sig(t′′) ⊆ γ \ σ, we get t] t′ 6|= ϕ, in contradiction of
t] t′ |= Σ. Similarly, when ϕ ∈ Γ, we have that sig(ϕ) ⊆ γ and, as sig(t) ⊆ σ \γ,
we obtain t′] t′′ 6|= ϕ, in contradiction of t′] t′′ |= Γ.

“only if”. Assume s |= Σ∪Γ. Then, s |= Σ and s |= Γ. From t] t′] t′′ |= Σ, as
sig(Σ) ⊆ σ and sig(t′′) ⊆ γ\σ, we obtain t]t′ |= Σ. Similarly, from t]t′]t′′ |= Γ,
as sig(Γ) ⊆ γ and sig(t) ⊆ σ \ γ, we get t′] t′′ |= Γ. �

Proof (of Theorem 6). Let V ′ denote ren(V). By Lemma 5, a relational struc-

ture s is a model of Σ̃V ∪Ξ iff s = t] t′, where t and t′ are states over V and V ′,
respectively, such that t |= Σ̃V and t] t′ |= Ξ. Since V �Σ R, by Corollary 4

we have that t ∈ TΣ iff t |= Σ̃V . Moreover, denoting by ξ the function induced

18

by Ξ, we have that t] t′ |= Ξ iff t′ = ξ(t). Hence, t] ξ(t) |= Σ̃V ∪ Ξ for every

t ∈ TΣ and, vice versa, every model of Σ̃V ∪ Ξ has the form t] ξ(t) for some
t ∈ TΣ. Then,

Σ̃V ∪ Ξ |= ren
(
Σ̃V
)

⇐⇒ ∀s, s |= Σ̃V ∪ Ξ implies s |= ren
(
Σ̃V
)

⇐⇒ ∀t ∈ TΣ, t] ξ(t) |= ren
(
Σ̃V
)

;

and, for every t ∈ TΣ, we have that:

t] ξ(t) |= ren
(
Σ̃V
)

⇐⇒ ξ(t) |= ren
(
Σ̃V
) [

since sig
(
ren(Σ̃V)

)
⊆ V ′,

sig(t) ⊆ V, V ∩ V ′ = ∅
]

⇐⇒ ren−1
(
ξ(t)

)
|= Σ̃V

⇐⇒ u(t) |= Σ̃V
[

as u(t) = ren−1
(
ξ(t)

)]
Therefore, since (by assumption) f is surjective and V �Σ R, our claim follows
from Theorem 5. �

3.3 The View Complement

We have seen how injectivity of views ensures that, for each translatable view
update, there is only one possible and acceptable way of consistently propagat-
ing the changes towards the base relations by means of a suitable database
update. Since an injective view is lossless, in such a case the update is essen-
tially performed on a restructured copy of the whole database, in the sense that
the full informative content of the database is available also in the view, though
by means of a different schema. It is easy to imagine situations in which this
is not case, and sometimes even undesirable. For instance, consider the most
common scenario in which user views are created in order to allow access to
specific portions of the database, keeping untouched the rest of the data that is
beyond the scope of the view. Since such views are lossy by design, the results
achieved so far are not directly applicable.

We have seen before, when Lemma 1 was introduced, that translatable view
updates may have unique translations even when the view is not injective. How-
ever, as already noted, we do not pursue such a direction here. Rather, given a
view that is not injective, we want to gain injectivity by means of some addi-
tional information from the database, so as to fall back in the case discussed in
the previous section.

The lack of injectivity in a view causes a loss of information, due to the
fact that distinct database states are mapped to the same view state. Then,
in order to distinguish between distinct database states, we need some extra
“hints” that, combined with what is already known from the view itself, give
a full account of the database content. This additional information is made
available by another view, which takes the name of view complement, because
it “complements” the partial information of a lossy view.

For the rest of this section, let R, V and W be pairwise disjoint signatures,
and let Σ and Γ be finite satisfiable sets of constraints over R∪ V and R∪W,
respectively, such that their union is consistent.

19

Definition 6 (View complement). Let f be a view from R to V under Σ and
let g be a view from R to W under Γ. We say that g is a complement of f iff
the following hold:

(1) SΣ = SΓ ; and

(2) ∀s, s′ ∈ SΣ, s 6= s′ ∧ f(s) = f(s′) =⇒ g(s) 6= g(s′) .

In addition, g is said to be tight iff it also holds that:

(3) ∀s, s′ ∈ SΣ, g(s) 6= g(s′) =⇒ f(s) = f(s′) . �

In other words, a complement of f is a view g operating on the same domain of f
and capable of distinguishing between distinct database states which f maps to
the same view state. Moreover, a view complement g is tight when it separates
only distinct database states between which f is not able to distinguish, that is,
g complements f only where it is strictly necessary. Note that there exists at
least one complement for every view, namely the “identity” mapping over the
whole database.

The idea of view complement was first introduced by Bancilhon and Spyratos
in [2]. Our definition is indeed based on their work (cf. Theorem 4.2 in [2]) with
the additional requirement that f and g must have the same domain, which has
to be explicitly enforced here as we are in a setting with views under constraints.

Note that the notion of view complement, tight or not, is symmetric, in the
sense that if g is a (tight) complement of f then f is a (tight) complement of g.
Indeed, the second condition of Definition 6 is equivalent to

∀s, s′ ∈ SΓ, s 6= s′ ∧ g(s) = g(s′) =⇒ f(s) 6= f(s′) ;

while the last condition is equivalent to

∀s, s′ ∈ SΓ, f(s) 6= f(s′) =⇒ g(s) = g(s′) .

Therefore, we sometimes simply say that two views f and g are “complement-
ary”.

3.4 Injectivity by Complement

A view complement provides information that, added to the data coming from
the view alone, allows to reconstruct the entire database. In what follows, again
by means of logical definability, we will constructively characterise the notion
of view complement and show how it is possible to obtain an injective view by
opportunely combining a (lossy) view with its complement.

In light of Lemma 5, two views f and g under constraints Σ and Γ, respect-
ively, can be combined in a natural way into a single view under Σ ∪ Γ, which
we call the union of f and g, written as f] g.

Corollary 7. Let f be a view from R to V under Σ and g be a view from R
to W under Γ. Then, the function f] g associating each s ∈ SΣ ∩ SΓ with the
state f(s)] g(s) is a view from R to V ∪W under Σ ∪ Γ.

Proof. For each s ∈ SΣ ∩ SΓ, we have that s] f(s) |= Σ, as f is a view under
Σ, and s] g(s) |= Γ, as g is a view under Γ. Therefore, s] f(s)] g(s) |= Σ ∪ Γ
by Lemma 5. �

20

There is a close connection between complementarity and injectivity of views,
given by the fact that two views under constraints and with the same domain
are complementary if and only if their union is injective.

Lemma 6. Let f be a view from R to V under Σ, let g be a view from R to W
under Γ and let SΣ = SΓ. Then, f] g is injective if and only if f and g are
complementary.

Proof. We will show that f and g are not complementary if and only if f] g is
not injective. Assuming SΣ = SΓ, we have that f and g are not complementary
iff the second condition of Definition 6 is violated, that is, iff there exist states
s, s′ ∈ SΣ with s 6= s′ and such that f(s) = f(s′) and g(s) = g(s′). Since f and
g are views under constraints, f(s) and g(s) are states with the same domain
over disjoint signatures, and so are f(s′) and g(s′). Therefore, we have that
f(s) = f(s′) and g(s) = g(s′) iff f(s)] g(s) = f(s′)] g(s′), that is, iff f] g is
not injective. �

The following lemma establishes that, given views f and g induced by Σ and
Γ, respectively, the set Σ ∪ Γ in turn induces a view that is the union of f and
g. Moreover, the views have the same domain if and only if the embeddings of
their corresponding constraints are equivalent.

Lemma 7. Let R�f
Σ V and R�g

Γ W. Denote by Σ̃R and Γ̃R the R-embeddings
of Σ and Γ, respectively. Then,

1) R
f]g
−−−�
Σ∪Γ

V ∪W ;

2) SΣ = SΓ if and only if Σ̃R ≡ Γ̃R .

Proof.

1) Assume R�Σ V and R�Γ W, and suppose it does not hold that R�Σ∪Γ

V ∪W. Hence, there are two models s] t] z and s] t′] z′ of Σ ∪ Γ such
that t 6= t′ or z 6= z′. When t 6= t′, as both s] t and s] t′ are models of Σ by
Lemma 5, we get a contradiction of R�Σ V. Similarly, s] z and s] z′ are
models of Γ; thus, if z 6= z′, we get a contradiction of R �Γ W. Therefore,
R�Σ∪Γ V ∪W. Now, let f be the view from R to V induced by Σ and g be
the view from R to W induced by Γ. We are left to show that f] g is the
view from R to V ∪W induced by Σ ∪ Γ, which follows by Theorem 1 from
Corollary 7 and the fact that R�Σ∪Γ V ∪W.

2) Direct consequence of Corollary 4, for which s ∈ S is Σ-consistent iff s |= Σ̃R
and it is Γ-consistent iff s |= Γ̃R. �

Proposition 2. Let R �Σ∪Γ V ∪W and SΣ = SΓ. Then, R �Σ V and
R�Γ W.

Proof. Suppose R �Σ V does not hold, that is, there exist models s] t and
s] t′ of Σ with t 6= t′, for some s ∈ SΣ. As SΣ = SΓ, we have that s ∈ SΓ, hence
there exists a state z overW for which s]z |= Γ. But then, by Lemma 5, s]t]z
and s] t′] z are distinct models of Σ ∪ Γ, in contradiction of R�Σ∪Γ V ∪W.
A symmetric argument applies for proving R�Γ W. �

21

We are now ready to give an important characterisation of complementarity
between two views induced by constraints in terms of logical equivalence and
definability.

Theorem 8. Let R �f
Σ V and R �g

Γ W. Then, f and g are complementary

iff Σ̃R ≡ Γ̃R and V ∪W �Σ∪Γ R.3

Proof. By Lemma 7, Σ∪Γ induce a view from R to V ∪W that is exactly f] g
and, moreover, we have that SΣ = SΓ iff Σ̃R ≡ Γ̃R. Then, by Lemma 6, f and
g are complementary iff f] g is injective, which by Lemma 3 is the case if and
only if V ∪W �Σ∪Γ R. �

Given a view f induced by a set of constraints Σ, one way of finding a
complement consists in abducing another set of constraints Γ consistent with Σ
and satisfying the conditions of Theorem 8, which guarantees that the view g
induced by such a Γ is indeed a complement of f .

In the general case considered by B&S, where views are arbitrary functions,
there are views not induced by constraints that could nevertheless qualify as
complements of the given view. However, without a constructive characterisa-
tion for such views, like the one we propose here for views induced by constraints,
there are no means to find and compute them.

3.5 Translation under Constant Complement

We have seen that, by means of a view complement, we can recover information
missing from a lossy view. In particular, we have shown that the the union of
a view with its complement is an injective view, which gives us the possibility
of using the results presented in Section 3.2. However, as pointed out earlier,
updating an injective view, due to its losslessness, is essentially the same as
updating the whole database through a different schema. Considering that
lossy views are meant to limit the interaction with the database in the first
place, such an unrestricted update capability is undesirable.

Following the rationale that the only purpose for which a view complement is
made available is that of allowing for a lossy view to be updatable, we demand
that the information it provides be invariant during the update process. In
other words, view updates must never modify, neither directly nor indirectly,
any data that belongs to the view complement. Putting together translatability
of updates and invariance of the complement results in the formal notion given
below (cf. Definition 5.1 in [2]).

Definition 7 (g-translatability). Let f be a view under Σ and let g be a com-
plement of f . A view update u ∈ UV is called g-translatable iff for each s ∈ SΣ

there exists s′ ∈ SΣ such that:

(1) f(s′) = uf(s) ; and (translatability)

(2) g(s′) = g(s) . (constant complement) �

That is, a view update is g-translatable if it is translatable (according to Defin-
ition 5) and, in addition, leaves the complement g unchanged. For this reason,

3Σ̃R and Γ̃R denote the R-embeddings of Σ and Γ, respectively.

22

s

s′

s′′

f

f

f

g

g

g

u

u

SΣ = SΓ TΣ

ZΓ

Figure 7: The complement g is not tight, as f(s) 6= f(s′′) even though g(s) 6= g(s′′).
Nevertheless, the update u is g-translatable.

we say that such an update is translatable under constant complement. In gen-
eral, there might be more than one complement of a given view, and an update
is g-translatable or not depending on the particular complement g we consider.
Thus, the choice of a complement defines an “update policy”, assigning unam-
biguous semantics to the view updates. It is easy to see that non-strict updates
are always g-translatable, independently on g itself. On the other hand, strict
updates are translatable under constant complement only if the complement is
not injective.

Proposition 3. Let f be a view under Σ, let g be a complement of f and let
u ∈ Uf . Then, u is g-translatable only if g is not injective.

Proof. Since u is strict, f(s) 6= uf(s) for some state s ∈ SΣ. Assuming u to
be g-translatable, there is s′ ∈ SΣ such that f(s′) = uf(s) and g(s′) = g(s).
Hence, we get f(s′) 6= f(s) and, in turn, s′ 6= s. Therefore, g is not injective.�

Intuitively, a strict update is bound to make some changes on the view, which
are then propagated to the database, which is in turn forced to change, and
an injective complement is nothing else than a lossless view of the database,
therefore the changes must be reflected in it as well.

Next, we show that tightness is a sufficient condition for the complement to
remain constant with respect to a translatable update.

Proposition 4. Let f be a view from R to V under Σ, let u ∈ UV be translat-
able and let g be a tight complement of f . Then, u is g-translatable.

Proof. Let s ∈ SΣ. We need to show that there is a database state whose image
through f is equal to uf(s) and whose image through g is equal to g(s). Clearly,
if uf(s) = f(s), the state we are looking for is s itself. Thus, let us consider the
non-trivial case when uf(s) 6= f(s). As u is translatable, uf(s) is in the image
of f , hence there exists s′ ∈ SΣ such that f(s′) = uf(s). Since f(s′) 6= f(s), by
the tightness of g we obtain that g(s′) = g(s). �

Not surprisingly, the converse of Proposition 4 does not hold, in that trans-
latability under constant complement does not imply the tightness of the com-
plement, as the counter-example in Figure 7 demonstrates.

23

Given two updates u ∈ UV and v ∈ UW , with some abuse of notation we
denote by u] v the combined update that, for states t and z with the same
domain over V and W, respectively, associates t] z with u(t)] v(z). Then, the
following theorem establishes the relationship between translatability w.r.t. a
view under constant complement and translatability w.r.t. the union of a view
and its complement.

Theorem 9. Let f and g be complementary, let u ∈ UV and let v ∈ UW \ Ug.
Then, u is g-translatable w.r.t. f if and only if u] v is translatable w.r.t. f] g.

Proof. The update u] v is translatable w.r.t. f] g iff, for each s ∈ SΣ, there is
s′ ∈ SΣ s.t.

(
f] g

)
(s′) =

(
u] v

)(
(f] g)(s)

)
. By definition of f] g and u] v,

this is the case iff f(s′)] g(s′) = uf(s)] vg(s) and, in turn, iff

f(s′) = uf(s) and g(s′) = vg(s) . (14)

Since v 6∈ Ug (that is, v is non-strict on g), v is the identity on g(SΣ), hence
vg(s) = g(s) for every s ∈ SΣ. Therefore, we have g(s′) = g(s) in (14), which
consequently becomes the definition of g-translatability of u w.r.t. f . �

This allows us to extend the result on the translatability of updates on inject-
ive views, obtained in the previous section, also to the case of g-translatability.

Theorem 10. Let R�f
Σ V, let R�g

Γ W and let g be a complement of f . Let

Π̃ be the (V ∪W)-embedding of Σ ∪ Γ and let ren be a renaming over R ∪ V ∪
W. Let u ∈ UV be expressed by Ξ and let Ω be the W-defining set such that
∀x .W (x) ≡ ren

(
W (x)

)
for each W ∈ W. Then, u is g-translatable if and only

if Π̃ ∪ Ξ ∪ Ω |= ren(Π̃).

Proof. Let ω denote the function induced by Ω. Then, z = ren−1
(
ω(z)

)
for

every z ∈ g(SΣ), hence Ω expresses an update v ∈ UW \ Ug. By Theorem 9,
u is g-translatable w.r.t. f if and only if the update u] v expressed by Ξ ∪ Ω
is translatable w.r.t. f] g and, by Theorem 6, this is the case iff Π̃ ∪ Ξ ∪ Ω |=
ren
(
Π̃
)
. �

4 Translatable Updates on Projective Views

In this section, we discuss in some detail a setting consisting of a single database
relation and views defined by projections. It turns out that, when the database
constraints are full dependencies, the view mapping defined by the projections
is invertible iff the database relation can be reconstructed by their natural join.
We point out that invertibility of views under constraints is finitely controllable
in this case, which is a generalisation of the setting studied in [7] where only two
views are considered. Indeed, our general criterion for translatability of updates
w.r.t. an instance under egd’s and full tgd’s subsumes the conditions given in
[7] for the case in which the database constraints are fd’s only.

The general setting we consider here consists of a single database relation
over a universal set of attributes U and views defined by projections on subsets
X1, . . . , Xn of U . We assume w.l.o.g. that U is a totally ordered set and denote
by apos(A) the position of attribute A within U . For a subset X of U , apos(X)
denotes the set {apos(A) | A ∈ X}. Let R = {R} and V = {V1, . . . , Vn}, where

24

R and each Vi ∈ V have arities |U | and |Xi|, respectively. Each position p in R
is associated with the (one and only) attribute A ∈ U for which apos(A) = p.
Then, a projection on X ⊆ U is expressed by the following open formula:

projectX(x)
def≡ ∃y R(w) ; (15)

where x, y and w are sequences of distinct variables such that var(x) ∩ var(y)
= ∅, var(w) = var(x)∪ var(y) and |w| = |x|+ |y|. In addition, all variables from
var(x) are required to appear in w at positions apos(X) and in the same order
in which they appear in x.

The set of global constraints we consider is Σ = ΣR ∪ ΣRV , where ΣR is a
set of constraints over R and ΣRV consists of one formula of the following form:

∀x
(
Vi(x)↔ projectXi

(x)
)

; (16)

for each Vi ∈ V. Let f : SΣ → TΣ be the view induced by Σ and observe
that, since there are no constraints on the view schema, every database state
that satisfies ΣR is Σ-consistent, therefore SΣ coincides with the set of legal
database states. Moreover, being a view induced by constraints, f is surjective,
and it is invertible iff impl-def(R,V,Σ).

We denote by pos(Vi, p) the position of R corresponding to the p-th position
of Vi and pos(Vi) denotes the set {pos(Vi, p) | 1 ≤ p ≤ arity(Vi)}, that is, the set
of positions of R on which Vi projects. As an example, for Vi(x1, x2) defined as
∃y1R(y1, x1, x2), pos(Vi, 2) = 3 because the variable x2 in the second position
of Vi occurs in R at position 3, and pos(Vi) = {2, 3}. We say that V is acyclic
if the hypergraph with {1, . . . , arity(R)} as set of nodes and {pos(Vi) | Vi ∈ V}
as set of hyperegedes contains no cycles (see section 6.4 in [1]).

4.1 Invertibility of views

Let us first consider the case, studied in [7], in which there are only two view
symbols, that is, V = {V1, V2}. Rephrasing the definition given in [7], we say
that the view symbols V1 and V2 are complementary if for every two legal finite

database states s and s′ for which V1
f(s) = V1

f(s′) and V2
f(s) = V2

f(s′) it is the
case that Rs = Rs′ . Observe that the notion of complementarity is equivalent
to the implicit definability of R from V1 and V2 under Σ when considering finite
states only. In other words, V1 and V2 are complementary iff impl-deffin(R,V,Σ),
where impl-deffin denotes impl-def restricted to finite models (i.e., using |=fin in
place of |=). It is shown in [7] that, when ΣR consists of functional and join
dependencies, V1 and V2 are complementary if and only if ΣR finitely implies the
jd ./ [X1, X2], that is, the extension of R can always be reconstructed from the
extensions of V1 and V2 by means of natural join. Now, since unrestricted and
finite implication of a jd from a set of fd’s and jd’s coincide [1], complementarity
in the finite case implies complementarity in the unrestricted case, and the same
goes for implicit definability. Therefore, when ΣR consists only of fd’s and jd’s,
impl-def(R,V,Σ) and impl-deffin(R,V,Σ) coincide, that is, impl-def(R,V,Σ) is
finitely controllable and, in turn, also invert(V,Σ).

The above results can be extended to the more general setting where V =
{V1, . . . , Vn} with n ≥ 2 and ΣR consists of full dependencies, provided that V
is acyclic. Indeed, in [3] it is shown that under full dependencies the decom-
position of a database relation into a set of acyclic projections is lossless if and

25

only if the reconstruction operator is the natural join. Losslessness (of vertical
decompositions) and complementarity (of projective views) are equivalent no-
tions, hence the result in [3] properly generalizes the one in [7], as fd’s and jd’s
are a special case of egd’s and full tgd’s, respectively, and two projections are
always acyclic. Since for full dependencies finite and unrestricted implication
coincide [1], impl-def(R,V,Σ) is finitely controllable also in this extended set-
ting. Moreover, we know that whenever R is implicitly defined by V under Σ,
the extension of R can be reconstructed from the extensions of the n symbols
in V by natural join, that is, Σ entails the following equivalence:

∀x
(
R(x)↔ V1(x1) ∧ · · · ∧ Vn(xn)

)
; (17)

where x and x1, . . . , xn are sequences of variables such that:

1. var(x) =
⋃n

i=1 var(xi),
2. xi[p] = xj [q] iff pos(Vi, p) = pos(Vj , q), and
3. x[p] = xi[q] iff p = pos(Vi, q).

In other words, variables corresponding to the same position in R must coincide.
Note that (17) is well-defined if and only if {1, . . . , arity(R)} =

⋃n
i=1 pos(Vi), that

is, the projections cover the positions of R entirely.

4.2 Translatability of view updates

We now turn to the problem the problem of checking translatability under con-
stant complement w.r.t. a view state in the extended setting with n complement-
ary projective views. Thus, let V = {V1, . . . , Vn} with n ≥ 2 and let C ⊆ V be
the set of symbols constituting the complement, that is, whose extension must
remain invariant during the update. In general, here ΣR is a set of full depend-
encies. In our approach, testing whether a view update u is translatable w.r.t.
a finite legal view state t can be done in PTIME in the size of u(t),4provided

that u(t) is also finite, by checking that u(t) satisfies the V-embedding Σ̃V of Σ,
which is obtained by replacing every occurrence of R(x) in Σ with its explicit
definition, that is, the formula V1(x1) ∧ · · · ∧ Vn(xn).

For the special case when n = 2, necessary and sufficient conditions for the
translatability w.r.t. an instance of insertions, deletions and replacements in the
extension of V1 while keeping the extension of V2 constant are given in [7], with
the further restriction that ΣR consists of fd’s only. As an exercise, it is easy to
check that the conditions given separately in [7] for the translatability w.r.t. an
instance of insertions, deletions and replacements can be obtained by spelling
out in each case our general criterion for translatability w.r.t. a view state, which
subsumes all of them, modulo the fact that we allow for more general database
constraints rather than just fd’s and that we consider insertions (deletions) of
possibly (non-)existing tuples and replacements of a tuple with possibly the
same one.5 We give an idea of how our criterion corresponds to the conditions
of [7] in the case of insertions by means of an example.

4This is the data complexity of testing whether a finite relational structure is a model of
a FOL theory.

5For instance, condition (b) of Theorem 3 in [7] is necessary only due to the assumption
that the tuple to be inserted is not already present in the view extension.

26

Example 2. Let U = {E,D,P, S,M}, where E stands for Employee, D for
Department, P for Position, S for Salary and M for Manager. Let < be a total
order on U such that E < D < P < S < M , hence apos(E) = 1, apos(D) = 2,
apos(P) = 3, apos(S) = 4 and apos(M) = 5. Let V = {V1, V2} and ΣRV consist
of:

∀x1, x2, x3

(
V1(x1, x2, x3) ↔ ∃y1, y2R(x1, x2, x3, y1, y2)

)
; (18a)

∀x1, x2, x3, x4

(
V2(x1, x2, x3, x4)↔ ∃y1 R(x1, x2, y1, x3, x4)

)
; (18b)

that is, the two view symbols are defined by projections on EDP and EDSM .
Let ΣR consists of the following constraints:

∀x
(
R(x1, x2, x3, x4, x5) ∧R(x1, x2, x

′
3, x
′
4, x
′
5)→ x3 = x′3

)
; (19a)

∀x
(
R(x1, x2, x3, x4, x5) ∧R(x′1, x

′
2, x3, x

′
4, x
′
5)→ x4 = x′4

)
; (19b)

∀x
(
R(x1, x2, x3, x4, x5) ∧R(x′1, x2, x

′
3, x
′
4, x
′
5)→ x5 = x′5

)
; (19c)

where x is the sequence of all the variables appearing in each case. Equations
(19a), (19b) and (19c) express the fd’s ED → P , P → S and D →M , respect-
ively. It can be verified that Σ = ΣR ∪ ΣRV implies the jd ./ [EDP,EDSM],
that is:

∀x
(
R(x1, x2, x3, x4, x5)↔ V1(x1, x2, x3) ∧ V2(x1, x2, x4, x5)

)
. (20)

By substituting every occurrence of R(x1, x2, x3, x4) in (18a), (18b), (19a), (19b)
and (19c) with the explicit definition V1(x1, x2, x3)∧V2(x1, x2, x4, x5) we get the
tgd’s:

∀x1, x2, x3

(
V1(x1, x2, x3) → ∃y1, y2 V2(x1, x2, y1, y2)

)
; (21a)

∀x1, x2, x3, x4

(
V2(x1, x2, x3, x4)→ ∃y1 V1(x1, x2, y1)

)
; (21b)

and egd’s:

∀x
(
V1(x1, x2, x3) ∧ V1(x1, x2, x

′
3) → x3 = x′3

)
; (21c)

∀x
(
V1(x1, x2, x3) ∧ V1(x′1, x

′
2, x3) ∧ V2(x1, x2, x4, x5)

∧V2(x′1, x
′
2, x
′
4, x
′
5)→ x4 = x′4

)
;

(21d)

∀x
(
V2(x1, x2, x3, x4) ∧ V2(x′1, x2, x

′
3, x
′
4)→ x4 = x′4

)
; (21e)

together constituting the V-embedding Σ̃V of Σ. Note that, while the fd’s (19a)
and (19c) on R are preserved as the fd’s (21c) and (21e) on V1 and V2, respect-
ively, the fd (19b) becomes a genuine egd, namely (21d), on V1 and V2.

Let a = 〈e, d, p, s〉 and consider the view update u, expressed by {noopV1
,

insertV2
(a)}, that inserts the tuple a into the extension of V2 while the extension

of V1 remains unchanged. Given a view state t satisfying Σ̃V , u is translatable
w.r.t. t iff u(t) satisfies Σ̃V too, where u(t) is such that V2

u(t) = V2
t ∪ {a} and

V1
u(t) = V1

t. As V1 is invariant, u(t) trivially satisfies (21a), but it satisfies
(21b) iff V1

t contains a tuple agreeing with a on the first two elements. In other
words, we can insert a into V2

t only if there is a tuple 〈e, d, p〉, for some p,
in the extension of V1. This corresponds to condition (a) of Theorem 3 in [7]
for the translatability of insertions, while condition (b) is necessary only if we

27

assume that a does not belong to V2
t, that is, the tuple we want to insert is not

already present in the extension of V2 before the update. Finally, checking that
u(t) satisfies all the edg’s in Σ̃V , namely (21c), (21d) and (21e), corresponds to
condition (c). �

It should appear clear that with
∣∣2V ∣∣ choices for the complement symbols,

stating conditions à la [7] for the translatability w.r.t. an instance for each
possible view update when |V| > 2 could be quite tedious. Fortunately such
conditions are subsumed by our general criterion and, if needed, can be derived
from it in each case.

Example 3. Let U and ΣR as in Example 2, but let V = {V1, V2, V3} and ΣRV
consist of the formulae defining V1, V2 and V3 as projections on EDP , PS and
DM , respectively. It is easy to verify that V is acyclic and that Σ implies the
jd ./ [EDP,PS,DM]. By substituting the explicit definition of R in terms of

V in Σ, we obtain Σ̃V consisting of the inclusion dependencies V1[D] ⊆ V3[D],
V3[D] ⊆ V1[D], V1[P] ⊆ V2[P] and V2[P] ⊆ V1[P], and of the fd’s V1 : ED → P ,
V2 : P → S and V3 : D →M .

Let C = {V3}. The update u1 expressed by {insertV1
(〈e, d, p〉), insertV2

(〈p, s〉),
noopV3

} is translatable w.r.t. a legal view state t iff there is a tuple 〈d,m〉 in V3
t

for some m (which corresponds to satisfying the ind V1[D] ⊆ V3[D], while the

other ones are trivially satisfied) and u1(t) satisfies all the fd’s in Σ̃V involving V1

and V2. The view update u2 expressed by {insertV1
(〈e′, d′, p′〉), noopV2

, noopV3
}

is translatable w.r.t. t iff there are tuples 〈p′, s〉 ∈ V2
t and 〈d′,m〉 ∈ V3

t for some

s and m, respectively, and u2(t) satisfies all the fd’s in Σ̃V involving V1. �

Note that the view update u1 in Example 3 requires the simultaneous inser-
tion of tuples into the extension of both V1 and V2, which in practise (e.g., in
SQL) would be achieved by means of a transaction consisting of two successive
insertions.

Another difference between our general criterion for translatability (w.r.t. a
view state) and the approach followed in [7] is that, while the latter requires
some tests on the view instance and some other at the database level, the former
can be checked entirely at the view level.

We conclude the section with a note about the problem of checking translat-
ability of view updates w.r.t. every view state, and not just a given one. This is
indeed the problem on which Bancilhon and Spyratos were originally focus in [2],
but it is ignored in [7]. The characterisation we gave in our Theorem 6 provides a
method that, even though possibly incomplete, allows to check whether a view
update is translatable w.r.t. every view state. Apart from the trivial update
consisting of noopVi

for each Vi ∈ V, a view update which is always translatable
in Example 3 is expressed by:{(
∃xV1(x, d, p)→ insertV1

(e, d, p)
)
∧
(
@xV1(x, d, p)→ noopV1

)
, noopV2

, noopV3

}
that is, insert tuple 〈e, d, p〉 into the extension of V1 only if there exists already
another tuple with the same value for attributes Department and Position, oth-
erwise do nothing.

28

5 Conclusion and Future Work

We presented a framework, based on the notion of view under constraints, which
is an instance of B&S’ abstract one, in that we consider only view mappings that
are expressible by means of FOL constraints. By using the notion of definability,
we gave a constructive characterisation of when and whether a view induced by
a set of constraints is invertible, and we provided a general criterion, based on
the idea of “embedding” of the constraints, for testing whether a FO-expressible
view update is translatable. We studied an application setting, which extends
the one considered in [7] and in which our framework is complete, and we com-
pared our general criterion for translatability of updates w.r.t. an instance with
the conditions given in [7] for insertions, deletions and replacements. Although
our approach might not be suitable for every application setting, we believe that
it can provide some guidance in a field which remains still largely unexplored.

For what concerns future work, the following directions seem worth of further
investigation:

1. identify other fragments where implicit definability is finitely controllable
(e.g., views defined by selections) and explore the potential of languages
in the Datalog± family [6] in this sense;

2. in particular, further extend the setting presented in Section 4 to multiple
database relations and views defined by projections over joins, allowing
also some form of non-full tgd’s as database constraints (possible candid-
ates are acyclic inclusion dependencies and non-key-conflicting tgd’s);

3. study the connection with logical abduction with respect to the possibility
of finding view complements and (classes of) translatable updates.

We conjecture that implicit definability in the setting of point 2 is finitely
controllable, but that the inverse mapping might not necessarily be given by the
join operator in this case, hence the explicit definitions of each database symbol
in terms of the view symbols should be obtained through rewriting techniques
like the ones described, e.g., in [10, 5].

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM
Transactions on Database Systems, 6(4):557–575, Dec. 1981.

[3] C. Beeri and M. Y. Vardi. On acyclic database decompositions. Information
and Control, 61(2):75–84, 1984.

[4] E. W. Beth. On Padoa’s method in the theory of definition. Indagationes
Mathematicae, 15:330–339, 1953.

[5] A. Borgida, J. de Bruijn, E. Franconi, I. Seylan, U. Straccia, D. Toman,
and G. Weddell. On finding query rewritings under expressive constraints.
In Proceedings of SEBD-2010, Rimini, Italy, June 2010.

[6] A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. Datalog±: a unified approach to
ontologies and integrity constraints. In Proceedings of the 12th International

29

Conference on Database Theory, ICDT ’09, pages 14–30, New York, NY,
USA, 2009. ACM.

[7] S. S. Cosmadakis and C. H. Papadimitriou. Updates of relational views.
Journal of the Association for Computing Machinery, 31(4):742–760, Oct.
1984.

[8] G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of
consistent views. ACM Transactions on Database Systems, 13(4):486–524,
Dec. 1988.

[9] Y. Gurevich. Toward logic tailored for computational complexity. In Com-
putation and Proof Theory, volume 1104 of Lecture Notes in Mathematics,
pages 175–216. Springer Berlin / Heidelberg, 1984.

[10] G. Huang. Constructing Craig interpolation formulas. In Computing and
Combinatorics, volume 959 of Lecture Notes in Computer Science, pages
181–190. Springer Berlin / Heidelberg, 1995.

[11] J. Lechtenbörger. The impact of the constant complement approach to-
wards view updating. In Proceedings of PODS 2003, pages 49–55, San
Diego, CA, June 2003.

30

